As long as using this does not have any effect on power usage, this sounds like it could be a revolution in CPU engineering.
You can read the entire article at DailyTech.The computer industry is involved in a never-ending quest for the highest possible performance from computer components and other electrical devices. Over the years, there have been many advances that have boosted the computational power of computer systems from increasing the number of transistors to adding multiple processing cores.
Researchers across the world are hard at work on building microprocessors and other electrical components using a material discovered in 2004 called graphene. A group of researchers at MIT announced on March 19 that new findings made could lead to much faster microprocessors in the future. The new findings could lead to cell phones and other communications equipment that can transmit data much faster than devices available today.
The researchers at MIT have built an experimental frequency multiplier made from graphene. The multiplier is capable of taking an incoming electronic signal at a specific frequency and producing an output signal that it a multiple of the original frequency. One example of a use for the graphene frequency multiplier is inside a microprocessor to determine the clock speed of a CPU.
Frequency multipliers are used widely today according to MIT, but the difference between the multipliers we have today and the graphene multiplier is one of signal noise. Today's multipliers produce noisy signals that require filtration and consume lots of power. The new graphene frequency multiplier consists of a single transistor and produces a clean output signal in a highly efficient manner.
Shove it noob.1. thing this "CPU" is not a x86 cpu
2. i bet there exist today processors which run @ 10ghz (mb look at intel network switch/cpus)
3. worthless news![]()
Probably. This entire idea is still just a theory by the sounds of it. I don't think they actually have a working model yet.Why 'only' 1,000Ghz? Is that just a random estimate?